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The Equilibrium Distribution Coefficient and Its 
Derivation from 7X Solid-liquid Equilibrium 
Diagrams 

H. A. J .  OONK and H. L. PLEIJSIER 
LARORATORIUM VOOR ALGEMENE CHEMIE DER RIJKSUNIVERSITEIT UTRECHT 

VONDELLAAN 14 
UTRECHT, THE NETHERLANDS 

Summary 

It is shown that in a binary system, in which the components form a series 
of mixed crystals, the equilibrium distribution coefficient a t  infinite dilution 
can be derived from the solid-liquid equilibrium diagram. For that purpose 
an expression is derived that relates the coefficient to the termodynamic 
properties of the systcm. The latter, in turn, are related to the solid-liquid 
equilibrium diagram by means of the equal-G curve. The practical opera- 
tion of the method is illustrated with a number of examples for existing 
systems. 

INTRODUCTION 

The equilibrium distribution coefficient (ko) plays a great part in 
zone refining (1,2). It is given by the ratio X e 8 / X e z  where Xe8 and X e Z  
are the equilibrium mole fractions of solute in solid and liquid phase, 
respectively. 

This paper deals with distribution coefficients in binary systems in 
which a continuous series of mixed crystals can be formed. One of the 
main difficulties in these systems is to predict the value of ko for mole 
fractions approaching zero, i.e., to predict 

685 
Copyright @ 1971 by Marcel Dekker, Inc. NO PART of this work m a y  be reproduced 
or utilized in  any form or by any means, electronic or mechanical, including xerog- 
raphy, photocopying, microfilm, and recording, or by any information storage and 
retrieval system, without the written permission of the publisher. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



686 H. A. J. O O N K  AND H. L. PLElJSlER 

It is shown that, starting from the solid-liquid equilibrium diagram, 
reliable values for ko' can be obtained by an extrapolation method 
based on thermodynamics. 

The first two sections give a survey of the derivation of two limiting 
relations for dilute solutions: one originating from the equilibrium con- 
ditions for the solvent (first component), the other originating from the 
equilibrium conditions for the solute. The latter contains ko' and its 
connection with the phase diagram is expressed with the help of the 
concept of equal-G curve (third section). The practical operation of the 
method is given (fourth section) and is demonstrated by a number of 
examples (fifth section). 

GIBBS FUNCTIONS AND THERMODYNAMIC POTENTIALS 

At constant pressure (we confine ourselves to isobaric, T X ,  equi- 
libria) the Gibbs energy functions for solid and liquid solutions can be 
given as functions of absolute temperature and mole fraction of the 
second component, as 

g s ( T ,  Xa) = g t d s ( T ,  x.) + g E a ( T ,  x.) 
g'( T ,  Xl) = g t d l  ( T ,  X') + g"'( T ,  X i )  

( 2 )  

(3) 

The deviation from ideal behavior is expressed as an excess function, 

For gad ,  whether in solid or liquid solutions, we can write 
indicated by the superscript E. 

gtd(T,  X )  = (1 - x ) / ~ i . ( T )  + xw, . (T)  
+ R T (  ( 1  - X )  In (1  - X )  + X 1 n X j  (4) 

The excess functions, which are by definition zero a t  the axes X = 0 
and X = 1, are usually given as 

gE(T ,X)  = X ( 1  - X ) J - ( T , X )  (5) 

where f ( T ,  X )  may vary from a constant to a rather complicated 
function of T and X. 

To these mean molar Gibbs energies, partial molar Gibbs energies 
(thermodynamic potentials) are added (see Fig. l ) ,  with the general 
relations 

(6) 

(7) 

PI = 9 - x(ag/ax) 
Pz = g + (1 - X )  ( a g l a x )  
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EQUILIBRIUM DISTRIBUTION COEFFICIENT 

x 1  ___, 0 
FIG. 1. Gibbs functions and thermodynamic potentials (1 = liquid, s = 

solid) a t  a. fixed temperature. 

The conditions for equilibrium (Gibbs energy must be minimal for a 
given pressure, temperature, and over-all composit.ion) , are, in terms of 
the thermodynamic potentials, 

Pl6 = Pl' (8) 

M28 = PZ1 (9) 

LIMITING RELATIONS 

Substitution of Eqs. (2)  and (3 ) ,  with Eq. (4), in Eqs. (6) and (7) 
gives the following equations for the thermodynamic potentials for solid 
and liquid 

p 1 8 ( T ,  X.) = ~ I . ~ ( T )  + RT In ( 1  - X.)  + p l E 8 ( T ,  X.)  

p l l ( T ,  X ' )  = pl . ' ( (T )  + RT In ( 1  - X ' )  + plE'(T,  X l )  

(10) 

(11)  

pZ8(T,  X 8 )  = p2'*(T)  + RT In X B  + p P E s ( T ,  X.) 

p 2 ' ( T ,  X ' )  = p z " ( T )  + RT In X '  + pz"' (T,  X z )  

(12) 

(13) 
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688 H. A. J. OONK AND H. 1. PLElJSlER 

For X -+ 0 the excess thermodynamic potentials become 
lim p I E  = lim [gE - x ( a g E / a x ) ]  = 0 
x-0 x+o 

lim p Z E  = lim [gE + (1 - X) (agE/aX)] = lim ( a g E / a X )  (15) 

According to Eqs. (14) and (15), the limiting value of p I E  is zero and 
that of pZE is a constant. The nature of the excess functions is such that, 
with sufficient accuracy, these limiting values remain valid over the 
small X-range considered in the following derivations. 

Now two relations for limiting behavior can be obtained; one based 
on Eq. (8), the equality of thermodynamic potentials for the solvent, 
and one based on Eq. (9) for the thermodynamic potentials for the 
solute. 

x-0 x-0 x-0 

Solvent 

For X + 0 the thermodynamic potentials become 

pis(  T ,  X.) = T )  - RTX* (16) 
pI ' (T,X')  = pZ.'(T) - RTX' (17) 

Equating these expressions with condition (8) gives the following re- 
lation for the equilibrium mole fractions, indicated by the subscript e 

pI-'(T) - / L ~ . ~ ( T )  + RT(X," - X,') = 0 

A p i . ( T )  + RT(X,* - X,') = 0 

(18) 

(18') 
or 

where Apl.(T) can be written by dpL-/dT = -8 '  and, neglecting C ,  
influences, as 

which reduces to  (as for the pure component 1, Apl' = 0 at T = TI, 
its melting point) 

Substitution of Eq. (20) in Eq. (1s') gives 

&I. ( T )  = APlT-T, - ASI' ( T  - TI) (19) 

Ap1' (T)  -  AS^. ( T  - TI) ( 20) 

where, in the denominator, T is replaced by TI.  
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EQUILIBRIUM DISTRIBUTION COEFFICIENT 689 

This relation, known as Van't Hoff's law, is the generic formula of a 
set of relations used to interpret temperature-time curves (melting 
curves) for the experimental determination of distribution coefficients; 
an example is given in Ref. 3 and a survey can be found in Ref. 4 .  

Solute 

For X -+ 0 the thermodynamic potentials of the solute become 

&( T ,  X.) = p2"( T )  + RT In X B  + lim (agEs/aX) 

pZz(T, X ! )  = pz.l(T) + RT In X z  + lim (agEz /aX)  

(22) 

(23) 

x-0 

x-to 

Equating these expressions gives 

A p z . ( T )  - RT In ( X Z / X e z )  + lirn ( a / a X )  AgE = 0 (24) 
x-0 

which, by analogy to Eq. (20), reduces to 

As2.(T2 - T )  - RT In ( X e 8 / X e 2 )  + lirn ( a / a X ) A g E  (25) 

And, because T approaches TI  as X approaches zero, this yields for 
the distribution coefficient koo, Eq. (1)  , 

x-0 

Unlike Eq. (21) , the other limiting relation, Eq. (26) contains quan- 
tities for the whole binary system, of which, in this connection, 
lirn ( d / a X ) A g E  needs a further inspection. It is the difference in the 
initial slopes of the functions g E l ( X )  and g E 8 ( X ) ,  both taken a t  T = T I .  
This difference can be derived from the T X  diagram if we accept that 
our solid and liquid solutions can be described by the regular-solution 
model. 

In the regular-solution approximation, g E  (Eq. 5) is taken to be 
independent of temperature, which implies, because 

g E  = h." - TsE (27) 

that sE should be zero for all values of X ( 5 ) .  
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698 H. A. J. OONK AND H. L. PLElJSlER 

In the case of molecules that form mixed crystals, for which the 
conditions are very stringent, i t  is generally believed, that sE does not 
deviate appreciably from zero, a t  least in practical considerations. 
Consequently, Eq. ( 2 6 )  will be in the foliowing form 

In the next section i t  is shown that the function A.h"(X) is related in a 
simple manner to the solid-liquid equilibrium diagram. 

SOLID-LIQUID EQUILIBRIUM DIAGRAM; EQUAL-G CURVE 

The Gibbs functions in the regular solution approximation are 

g s ( T ,  X.)  = ( 1  - X B ) / J ~ ~ ~ ( T )  + XS/JZ.~(T) 

+ R T ( ( 1  - Xs) In (1 - X s )  + X81nXs) + hEs(X8)  (29) 

g'(T, Xl) = ( 1  - Xl),;L(T) + X l p " ' ( X )  

+ R T (  ( 1  - Xl) In ( 1  - Xz) + X 1  In Xl) + h E z ( X l )  (30) 

In Fig. 1 i t  is seen that the point of intersection of the two g-curves 
has a mole fraction that always lies between X,' and X e S .  Therefore, 
in the TX plane there is a curve connecting the points of intersection 
obtained a t  the various temperatures with the property that its path is 
always between solidus and liquidus. This curve, which is called equal-G 
curve ( 6 ,  7'), is given by 

g"T, X) = d ( T ,  X) (31) 
At the intersection X8 = X 1  = X, so the superscripts in Eq. (31) can 
be dropped. Substitution of Eqs. (29) and (30) into Eq. (31) gives 
(with Eq. 20 and its equivalent for the second component) for the 
temperature of tJhe equal-G curve 

( 1  - X )  TlAsl. + X T ~ A S ~ '  + Ah"(X) 
(1 - X )  A S ~ .  + XASZ' T E G C ( X )  = _____- (32) 

Equation (32) contains the melting points and the melting entropies of 
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EQUILIBRIUM DISTRIBUTION COEFFICIENT 69 1 

the pure components and the function AhE; it can be written as 

with 

(1 - X )  TlAsi' + X T ~ A S Z '  
T z E R o ( X )  = (1 - X )  Asl. + XAsz' (34) 

The curve in the T X  plane represented by Eq. (34) is called zero line. 
In  general this curve does not deviate much from the straight line 
connecting T1 and T,. 

The distance from zero line to equal-G curve, a t  a given value X' 
of X ,  is equal to the value of the difference excess enthalpy for X = X' 
divided by the mean entropy of melting a t  X = X ' ;  see Fig. 2 .  

In the next section it will be shown how in an experimental phase 
diagram the equal-G curve can be drawn. If the equal-G curve is known, 
the function A h E ( X )  can be calculated and from it limx,o ( d / d X )  AhE, 
so that /coo is known too (Eq. 28). 

t I  L 

F I G .  2 .  Solid-liquid equilibrium diagram with equal-G curve ( -  -) and 
zero line (- -). 
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692 H. A. J. OONK AND H. L. PLElJSlER 

FIG. 3 

APPROXIMATE EQUAL-G CURVE IN AN EXPERIMENTAL 
PHASE DIAGRAM 

The procedure now is: To the experimental phase diagram a curve 
is added whnt is expected to be a good representat,ive of the real equal-G 
curve (EGC). This approximate EGC, with Eqs. (33) and (34), gives 
the function A h E ( X ) .  In  practice a number of points of the approximate 
EGC are determined which give a number of values for A h E ( X ) .  The 
initial slope of the function can then be found either graphically or 
arithmetically after adaptation of the values with the help of 

AhE(X)  = X ( l  - X ) { A  + B ( l  - 2 X )  + C ( l  - 2X)' + *. . )  (35) 

The number of parameters A ,  B,  6 ,  . . . that should be adapted depends 
on the number and reliability of the individual values and on the nature 
of the function AhE. 

In  diagrams with narrow two-phase regions the approximate EGC 
can, with fair accuracy, be drawn a t  sight. For diagrams with broad 
two-phase regions the approximate EGC is found in the following way 
(see Fig. 3) : 

The abscissa of the point of intersection is, in general, at the side of 
that coexisting phase in which the corresponding Gibbs function has 
the greater degree of curvature, i.e., the greater value for the second 
derivative with respect to X .  If, now, the position of X E C C  is given as a 
fraction 

then a good approximation appears to be 

f = 3 - 3 log,, Q (37) 
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EQUILIBRIUM DISTRIBUTION COEFFICIENT 693 

where 

For the separate solid and liquid stat,es the second derivatives are 
given by 

RT d2hE 
- + -  a29 

ax2 X ( 1 - X )  d X 2  
~- (39) 

in which the first term on the right-hand side results from ideal-solution 
behavior; the second term is due to the deviation from that behavior 
when expressed in terms of the regular-solution model. 

Unfortunately, the phase diagram only yields the function AhE = 
hEz - hE8 and not hEl and hE8 separately, so that in principle the method 
should only be used if a t  least one of the separate functions is known 
from a different source. On the other hand, there are a great number of 
cases in which the first term of the right-hand side of Eq. (39) dominates. 
This is the more so in the regions close to the axes X = 0 and X = 1 
which are, in view of the present method, the most important ones. 

EXAMPLES 

In  this section the procedure is demonstrated with the help of four 
real systems. In two cases the approximate EGC was determined by 
the fraction method. For the other two the approximate EGC was 
drawn a t  sight. A survey of the results is given in Table 1. The inaccu- 
racies of 1imx-o AhE given in the table are realistic estimates. The 
experimental values, also given in the table, were determined, by the 
authors referred to, with the help of melting curves based on Eq. (21). 

( a )  Naphthalene + P-Naphtol ( 8 ) .  The TX diagram of this system 
is shown by Fig. 4. The experimental data suggest solid and liquid 
solutions with small deviations from ideal-solution behavior. Moreover, 
these data were arrived a t  by a method that directly determines the 
corresponding coexisting phases (apart from the pure components, 8 
pairs of coexisting phases are available) . Consequently the conditions 
are ideal for the method based on the Eqs. (36), (37), and (38) : both 
solid and liquid solutions can safely be taken as ideal. 

The values calculated for AhE are shown in Fig. 5 along with the 
function obtained by the two-parameter adaptation of the 8 + 2 values. 
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x 1 - 350 
0 

FIG. 4. Phase diagram of the system naphthalene + 8-naphtol. (0)  
Experimental data (8). (+-) Solidus and liquidus calculated. 

- 50 

A hE 

T 

0 
0 -x  1 

FIG. 5. The function A h E / ( X )  for the system naphthalene f 8-naphtol. (a) 
Calculated values. (-) Obtained by adaptation of those values. 
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696 H. A. J. OONK AND H. L. PLElJSlER 

The latter is A h E ( X )  = - l S O X ( l  - X )  - 3 0 X ( 1  - X ) ( 1  - 2 X ) .  
The result was checked by calculation (7') of the solid-liquid equilibrium 
diagram, putting hEL = 0 and hEa ( X )  = - AhE ( X )  = B O X (  1 - X )  + 
30X ( 1  - X )  ( 1 - 2 X ) .  The solidus and liquidus curves shown in Fig. 4 
are those obtained by calculation ; not the experimental ones. 

( b )  Azobenzene + Stilbene ( 8 ) .  Phase diagram of Type I according 
to the classification of Bakhuis Roozeboom (9). The same procedure 
was followed as under Case ( a ) .  There is good agreement between the 
experimental diagram and the one calculated. 

( c )  Phenol + o-Cresol ( 1 0 ) .  Phase diagram of Type I11 with narrow 
two-phase region. The EGC was drawn a t  sight. The four-parameter 
adaptation of the AhE values was calculated. 

( d )  2 ,3 -  + 2 ,ZDimethylbutane ( 1 1 ) .  Equilibrium between plastic- 
crystalline and liquid solutions. The phase diagram contains a maximum 
and a minimum. This type was not, inserted by Bakhuis Roozeboom in 
his classification. In a recent enumeration (1.2) of types of phase dia- 
grams, its code is [+ -1. 

The experimental diagram has a very narrow two-phase region due 
to the presence of two extrema and the very low values for the entropies 
of melting. The EGC was drawn at  sight. The initial slopes were ob- 
tained by graphical processing of the AhE values. 

LIST OF SYMBOLS 

equilibrium distribut,ion coefficient, 
equilibrium distribution coefficient a t  infinite dilution 
mole fraction of the second component 
absolute temperature 
gas constant 
Gibbs energy, molar 
enthalpy, molar 
entropy, molar 
partial Gibbs energy 
melting point, first component 
melting point second component 

Superscripts 

id referring to ideal-solution behavior 
E indicating excess functions 
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EQUILIBRIUM DISTRIBUTION COEFFICIENT 697 

1 for the liquid state 
s for the solid state 

dots denoting specific molar quantities 

Subscripts 

1 for the first component, solvent 
2 for the second component, solute 
e referring to thermodynamic equilibrium 

The operator A written before a quantity or function denotes the 
difference between the values of that quantity or function in the liquid 
and in the solid state, in both states taken a t  the same mole fractions, 
e.g., Ahl. = hl.l - hl.*. 
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