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The Equilibrium Distribution Coefficient and Its
Derivation from TX Solid—Liquid Equilibrium
Diagrams

H. A. J. OONK and H. L. PLELJSIER

LABORATORIUM VOOR ALGEMENE CHEMIE DER RIJKSUNIVERSITEIT UTRECHT
VONDELLAAN 14
UTRECHT, THE NETHERLANDS

Summary

It is shown that in a binary system, in which the components form a series
of mixed crystals, the equilibrium distribution coefficient at infinite dilution
can be derived from the solid-liquid equilibrium diagram. For that purpose
an expression is derived that relates the coefficient to the termodynamic
properties of the system. The latter, in turn, are related to the solid-liquid
equilibrium diagram by means of the equal-G curve. The practical opera-
tion of the method is illustrated with a number of examples for existing
systems.

INTRODUCTION

The equilibrium distribution coefficient (k) plays a great part in
zone refining (I, 2). It is given by the ratio X.*/X.? where X.* and X,
are the equilibrium mole fractions of solute in solid and liquid phase,
respectively.

This paper deals with distribution coefficients in binary systems in
which a continuous series of mixed crystals ean be formed. One of the
main difficulties in these systems is to predict the value of %, for mole
fractions approaching zero, i.e., to predict

k= km k (1)
Xl
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It is shown that, starting from the solid-liquid equilibrium diagram,
reliable values for ko can be obtained by an extrapolation method
based on thermodynamies.

The first two sections give a survey of the derivation of two limiting
relations for dilute solutions: one originating from the equilibrium con-
ditions for the solvent (first component), the other originating from the
equilibrium conditions for the solute. The latter contains k¢® and its
connection with the phase diagram is expressed with the help of the
concept of equal-G curve (third section). The practical operation of the
method is given (fourth section) and is demonstrated by a number of
examples (fifth section).

GIBBS FUNCTIONS AND THERMODYNAMIC POTENTIALS

At constant pressure (we confine ourselves to isobaric, T'X, equi-
libria) the Gibbs energy functions for solid and liquid solutions can be
given as functions of absolute temperature and mole fraction of the
second component, as

g (T, X*) = ¢g“(T, X*) + ¢¥(T, X*) (2)
gi(T, X') = g*«(T, X*) + ¢*«(T, X!) (3)
The deviation from ideal behavior is expressed as an excess function,

indicated by the superseript E.
For g“, whether in solid or liquid solutions, we can write

gT, X) = (1 = X)u(T) + X (T)
+RT{1~X)In(1-X)+XInX} (4)

The excess funetions, which are by definition zero at the axes X = 0
and X = 1, are usually given as

¢°(T, X) = X(1 — X)/(T, X) (5)

where f(T, X) may vary from a constant to a rather complicated
function of T and X.

To these mean molar Gibbs energies, partial molar Gibbs energies
{thermodynamic potentials) are added (see Iig. 1), with the general
relations

m =g — X(3g9/9X) (6)

g+ (1 — X)(dg/0X) (7)

M2
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Fia. 1. Gibbs functions and thermodynamic potentials (1 = liquid, s =
solid) at a fixed temperature.

The conditions for equilibrium (Gibbs energy must be minimal for a
given pressure, temperature, and over-all composition), are, in terms of
the thermodynamic potentials,

= ! (8)

Bo® = pa! (9)

LIMITING RELATIONS

Substitution of Eqgs. (2) and (3), with Eq. (4), in Egs. (6) and (7)
gives the following equations for the thermodynamic potentials for solid
and liquid

w'(T, X*) = p*(T) + RTIn (1 — X*) + w®(T, X*)  (10)
m' (T, XY = w'(T) + RT In (1 — XY + w®(T, XY  (11)
pt (T, X*) = p2*(T) + RT In X* + ps® (T, X¥) (12)
p! (T, XY = w''(T) + RT In X' + w=Y(T, XV (13)
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For X — 0 the excess thermodynamic potentials become

lim 4% = lim [¢% — X (9¢%/0X)] =0 (14)
X0 X-0

lim gf = lim [g% + (1 — X)(39%/6X)] = lim (8g%/0X) (15)
X0 X0 X-0

According to Eqgs. (14) and (15), the limiting value of u;® is zero and
that of u.f is a constant. The nature of the excess functions is such that,
with sufficient accuracy, these limiting values remain valid over the
small X-range considered in the following derivations.

Now two relations for limiting behavior can be obtained; one based
on Eq. (8), the equality of thermodynamie potentials for the solvent,
and one based on Eq. (9) for the thermodynamic potentials for the
solute.

Solvent
For X — 0 the thermodynamie potentials become
w* (T, X°) = w*(T) — RTX* (16)
wm'(T, XY = wY(T) — RTX! (17)

Equating these expressions with condition (8) gives the following re-
lation for the equilibrium mole fractions, indicated by the subscript e
mHT) —wm(T) + RT(Xs — X)) =0 (18)
or
Aur (T) + RT(X¢# — X)) =0 (18"
where Apy' (T) can be written by ou /8T = —s  and, neglecting C,
influences, as
A (T) = Apirop, — st (T — T) (19)
which reduces to (as for the pure component 1, Auyy' =0 at T = T},
its melting point)
Aur (T) = —Asy (T — Ty) (20)
Substitution of Eq. (20) in Eq. (18") gives

(T = T as

Xo— Xt =
RT,

(21)

where, in the denominator, 7' is replaced by 7.
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This relation, known as Van’t Hoff’s law, is the generic formula of a
set of relations used to interpret temperature—time curves (melting
curves) for the experimental determination of distribution coefficients;
an example is given in Ref. 8 and a survey can be found in Ref. 4.

Solute
For X — 0 the thermodynamic potentials of the solute become
wt (T, X*) = up’*(T) + RT In X* 4 lim (dg%¢/9X) (22)
X0

(T, X% = uwY(T) + RT In X! + lim (8¢9%!/0X) (23)

X0

Equating these expressions gives

Auy (T) — RT In (X#/X2) + lim (8/0X)AgE = 0 (24)
X0
which, by analogy to Eq. (20), reduces to
Asy (Te — T) —~ RT hn (X2/XY) + lim (8/0X) Ag® (25)
X0

And, because T approaches T; as X approaches zero, this yields for
the distribution coeflicient %°, Eq. (1),

) )
ASQ'(Tz —_ Tl) + i:_l;l’ol G_X (AgE)T=T1 (26)

RT,

hl koo =

Unlike Eq. (21), the other limiting relation, Eq. (26) contains quan-
tities for the whole binary system, of which, in this connection,
lim (3/0X)Ag® needs a further inspection. It is the difference in the
initial slopes of the functions gZ!(X) and ¢g#¢(X), both taken at T = T1.
This difference can be derived from the TX diagram if we accept that
our solid and liquid solutions can be described by the regular-solution
model.

In the regular-solution approximation, g¥ (Eq. 5) is taken to be
independent of temperature, which implies, because

g% = h¥ — T's¥ (27)
that s¥ should be zero for all values of X (5).
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In the case of molecules that form mixed crystals, for which the
conditions are very stringent, it is generally believed, that s does not
deviate appreciably from zero, at least in practical considerations.
Consequently, Eq. (26) will be in the foliowing form

d
Asy (Ty — Th) + lim X ARE(X)
X0
In ko® = RT (28)
1

In the next section it is shown that the function AR#(X) is related in a
simple manner to the solid-liquid equilibrium diagram.

SOLID-LIQUID EQUILIBRIUM DIAGRAM; EQUAL-G CURVE

The Gibbs funections in the regular solution approximation are
¢ (T, X*) = (1 — X)w*(T) + Xop*(T)
+ RT{(1 - X*)In (1 — X*) + X°In X*} + hEs(X®) (29)
g(T, X" = (1 — XY «(T) + Xluy'(X)
+ RT{(1 —X)In(1—X) + X'In X!} + RFHXYH (30)
In Fig. 1 it is seen that the point of intersection of the two g-curves
has a mole fraction that always lies between X.! and X.. Therefore,
in the TX plane there is a curve connecting the points of intersection
obtained at the various temperatures with the property that its path is

always between solidus and liquidus. This curve, which is called equal-G
curve (6,7), is given by

g (T, X) = g{T, X) (31)
At the intersection X* = X! = X, so the superseripts in Eq. (31) can
be dropped. Substitution of Egs. (29) and (30) into Eq. (31) gives
(with Eq. 20 and its equivalent for the second component) for the
temperature of the equal-G' curve
(1 — X) T1A81' —+ XTzASz' + AhE(X)

(1 —_ X)ASI' + XASZ'

Equation (32) contains the melting points and the melting entropies of

Teoc(X) = (32)
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the pure components and the function AR%; it can be written as

B ARE(X)
Trec(X) = Tzero(X) + (1= X)dsr + Xasy (33)

with

(1 —_— X) T1A81' + XTzASg'
T X) = 4
zero (X) (1 — X)Asy + XAsy (34)

The curve in the TX plane represented by Eq. (34) is called zero line.
In general this curve does not deviate much from the straight line
connecting Ty and T,

The distance from zero line to equal-G curve, at a given value X’
of X, is equal to the value of the difference excess enthalpy for X = X’
divided by the mean entropy of melting at X = X’; see Fig. 2.

In the next section it will be shown how in an experimental phase
diagram the equal-G curve can be drawn. If the equal-G curve is known,
the function AR®(X) can be calculated and from it limx.o (d/dX) AR,
so that k¢ is known too (Eq. 28).

0 —X 1

Fig. 2. Solid-liquid equilibrium diagram with equal-G curve (- -) and
zero line (- -).
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Xe Xeoc X

Fic. 3

APPROXIMATE EQUAL-G CURVE IN AN EXPERIMENTAL
PHASE DIAGRAM

The procedure now is: To the experimental phase diagram a curve
is added what is expected to be a good representative of the real equal-G
curve (EGC). This approximate EGC, with Egs. (33) and (34), gives
the function AR?(X). In practice a number of points of the approximate
EGC are determined which give a number of values for Ah¥(X). The
initial slope of the function can then be found either graphically or
arithmetically after adaptation of the values with the help of

ARE(X) = X1 —-X){A+BA—-2X)+C(1 —-2X)2+4 .-} (35)

The number of parameters A, B, C, . . . that should be adapted depends
on the number and reliability of the individual values and on the nature
of the function AhZ.

In diagrams with narrow two-phase regions the approximate EGC
can, with fair accuracy, be drawn at sight. For diagrams with broad
two-phase regions the approximate EGC is found in the following way
(see Fig. 3):

The abscissa of the point of intersection is, in general, at the side of
that coexisting phase in which the corresponding Gibbs function has
the greater degree of curvature, i.e., the greater value for the second
derivative with respect to X. If, now, the position of Xggc is given as a

fraction
X — X
= abs <—?&—-—> (36)

then a good approximation appears to be

f=3%—3logu@ (37)
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where
_ @/0X)xox
(8%'/3X?) x—x.*

For the separate solid and liquid states the second derivatives are
given by

(38)

Py __RT __ aw

X~ X(1—x) T axe (39)

in which the first term on the right-hand side results from ideal-solution
behavior; the second term is due to the deviation from that behavior
when expressed in terms of the regular-solution model.

Unfortunately, the phase diagram only yields the function ARF =
hEt — hEs and not h®! and h¥e separately, so that in prineiple the method
should only be used if at least one of the separate functions is known
from a different source. On the other hand, there are a great number of
cases in which the first term of the right-hand side of Eq. (39) dominates.
This is the more so in the regions close to the axes X =0 and X =1
which are, in view of the present method, the most important ones.

EXAMPLES

In this section the procedure is demonstrated with the help of four
real systems. In two cases the approximate EGC was determined by
the fraction method. For the other two the approximate EGC was
drawn at sight. A survey of the results is given in Table 1. The inaccu-
racies of limy.o ARE given in the table are realistic estimates. The
experimental values, also given in the table, were determined, by the
authors referred to, with the help of melting curves based on Eq. (21).

(a) Naphthalene + B-Naphtol (8). The TX diagram of this system
is shown by Fig. 4. The experimental data suggest solid and liquid
solutions with small deviations from ideal-solution behavior. Moreover,
these data were arrived at by a method that directly determines the
corresponding coexisting phases (apart from the pure components, 8
pairs of coexisting phases are available). Consequently the conditions
are ideal for the method based on the Eqgs. (36), (37), and (38): both
solid and liquid solutions can safely be taken as ideal.

The values calculated for ARE are shown in Fig. 5 along with the
function obtained by the two-parameter adaptation of the 8 4 2 values.
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400

350
0 —X 1

Fic. 4. Phase diagram of the system naphthalene + B-naphtol. (@)
Experimental data (8). ( ) Solidus and liquidus ecalculated.

~50
AR \
0
0 — X 1

F16. 5. The function AkE/(X) for the system naphthalene -+ g-naphtol. (@)
Calculated values. (——) Obtained by adaptation of those values.
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The latter is ARE(X) = —180X (1 — X) — 30X (1 — X)(1 — 2X).
The result was checked by caleulation (?) of the solid-liquid equilibrium
diagram, putting 2! = 0 and h?*(X) = —ARF(X) = 180X (1 — X) +
30X (1 — X) (1 — 2X). The solidus and liquidus curves shown in Fig. 4
are those obtained by calculation; not the experimental ones.

(b) Azobenzene + Stilbene (8). Phase diagram of Type I according
to the classification of Bakhuis Roozeboom (9). The same procedure
was followed as under Case (a). There is good agreement between the
experimental diagram and the one calculated.

(¢) Phenol + o0-Cresol (10). Phase diagram of Type III with narrow
two-phase region. The EGC was drawn at sight. The four-parameter
adaptation of the ARF values was calculated.

(d) 2,3- + 2,2-Dimethylbutane (11). Equilibrium between plastic-
crystalline and liquid solutions. The phase diagram contains a maximum
and a minimum. This type was not inserted by Bakhuis Roozeboom in
his classification. In a recent enumeration (12} of types of phase dia-
grams, its code is [+ — .

The experimental diagram has a very narrow two-phase region due
to the presence of two extrema and the very low values for the entropies
of melting. The EGC was drawn at sight. The initial slopes were ob-
tained by graphical processing of the ARF values.

LIST OF SYMBOLS

ko equilibrium distribution coefficient
ko® equilibrium distribution coefficient at infinite dilution
X mole fraction of the second component
T absolute temperature
R gas constant
g Gibbs energy, molar
h enthalpy, molar
s entropy, molar
i partial Gibbs energy
T, melting point first component
T, melting point second component
Superscripts

id referring to ideal-solution behavior
E indicating excess functions
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1 for the liquid state
8 for the solid state
dots denoting specific molar quantities

Subscripts

1 for the first component, solvent
2 for the second component, solute
e referring to thermodynamic equilibrium

The operator A written before a quantity or function denotes the
difference between the values of that quantity or function in the liquid
and in the solid state, in both states taken at the same mole fractions,
e.g., Ahl = h1~l - hl"'.
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